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Human Computation
(early days)

“A CAPTCHA is a cryptographic protocol
whose underlying hardness assumption is
based on an Al problem” 2002

Benefits Benefits

player s/b else

e CAPTCHA



Human Computation
reCAPTCHA

“People waste hundreds of thousands of hours
solving CAPTCHAs every day. Let’s make use of
their work.”

Benefits Benefits

player s/b else

e reCAPTCHA
e CAPTCHA



Human Computation
GWAP

“More than 200 million hours are spent each
day playing computer games in the US.”

e Games with a Purpose

Benefits Benefits

player s/b else

e reCAPTCHA
e CAPTCHA



Human Computation
Duolingo

e Games with a Purpose

Duolingo e

Benefits Benefits

player s/b else

e reCAPTCHA
e CAPTCHA



Games with purpose

A GWAP:
* Provides entertainment to the player

e Solves a problem that cannot be automated,
as a side effect of playing the game

* Does not rely on altruism or financial
Incentives



Motivation for GWAP

Motivation:
* Access to Internet
* Tasks hard for computers, but easy for humans

* People spend lots of time playing computer
games



Examples of GWAPS

 ESP Game: labeling images

 Tag a Tune: labeling songs

* Verbosity: common facts about words

 Peekaboom: marking objects in an image

e Squigl o Flipit e Popvideo

B
1 You and a partner see : 1 Click on a tile to reveal .l
the same image and word. the image behind it. You and your partners see
— — the same video clip.

2 Hold down the mouse
and trace the object
described by the word.

2 Your goal is to find pairs [
of similar images. m ﬁa G I 2 gachof you enters words
WS NES describing what you

see and hear.

S Click submit. . ] 3 Use a lifeline to reveal all the
You get points for matching  ([HEHIT) images for a short time. a

your partner’s trace.




Three templates for GWAPS

* Qutput-agreement games
— ESP
— SQUIGL
— Popvideo

* |Inversion-problem games
— Peekaboom
— Phetch
— Verbosity

* Input-agreement games
— TagATune



Output-agreement games

Figure 1: In this output-agreement game,
players are given the same input and

w: . * Players receive the same input
© O .o ayers do not communicate

sz w= ¢ Players produce outputs based on
sl the input

Players win if/when output, , = output, |

* Game ends when outputs match

Figure 2: In this output-agreement game,

the partners are agreeing on a label.

Player 1 Player 2
I - ~"l I . 7 l
(003) (8 (0:06) animal

(0:07) puppy (0:11) m

(0:10) cute



ESP Game

Player 1 input: Player 2 input:

Player 1 outputs: Player 2 outputs:

e @Grass .« Pu

* Green .ppy
e Tail

* Dog . Dog

e Mammal

e Retriever



ESP modified

Player 1 input:

Player 1 outputs:
* Dog Player 2 input:
° IIDOg”
e Set of images:




Inversion-problem games

Figure 3: In this inversion-problem game,
given an input, Player 1 produces an out-

put, and Player 2 guesses the input.

Player 1 Player 2

it,,) ':"ftF'”tu

(t,,) output, |

Lo

(t,,) output, {t,,) output,,

(t, ) output, (L) output,

Players win iffwhen output, = INPUT

Players receive different
Inputs

)

One player is a “describer’
another is a “guesser”.

-

Game ends when the
guesser reproduces the
input of the describer

Limited communication,
e.g. “hot” or “cold”



Inversion-problem games
Verbosity

ithas
it looks like |
about the same size as |
itis related to feet
it is a kind of clothing




Input-agreement games

Figure 4: In this input-agreement game,
players must determine whether they

have been given the same input.

Player 1 Player 2
{tl.l) DLIJtpUt:LJ {tz.lJ D'“IltDUtE_l
' I
{tl.n) DUtDUtlln (tZ.mJ Dutputg_m
= [ =

Win if players guess whether INPUT =INPUT,

Players are given (same or
different) inputs

Players describe their inputs

Players see each other’s
descriptions

Game ends when the players
make a guess whether the
inputs were same or different



Input-agreement games
TagATune

Score

220 ‘TagaTune o™

AR 2:26

Describe the tune ... Listening to the same tune?

0:=— @EEIZD)

your description

your partaer’s description
piano singing
no vVox male vocal
bono country
english




Increasing player enjoyment

How do the authors measure Fun and Enjoyment?
Mechanisms:

 Timed response: setting time limits
e “Challenging and well-defined” > “Easy and well-defined”

* Score keeping
* Rewards good performance

Player skill levels
* 42% of players just above rank cutoff

* High-score lists
* Does not always work
* Randomness
 Random difficulty, random partners



Output Accuracy

Random matching

— Prevents collusion

Player testing

— Compare answers to a gold standard
Repetition

— Accuracy by numbers

Taboo outputs
— Brings out the rarer outputs (priming danger)



GWAP Evaluation

* Throughput = #problem instances/human hour
 Enjoyment (average lifetime play): time spent
on a game/#players

e Expected contribution (per player) =
throughput®*ALP



Game



A Game-Theoretic Analysis of the
ESP Game



The ESP Game

* Developed by Luis von Ahn et. al. and sold to
Google in 2006.

SP Game




Formal ESP Model

massachusetts

gray
steady STAIUE crimson
white
90rmo Khiack hat

hOUSGbOOkm a N |Ogowa”

calm

hiflsculpture bronze
tshirt -

CapP re(brickflag

technology

Image Universe



Stage 1: Choose Your Effort

* Low effort (L): Sample dictionary
from most frequent words only,
i.e. the top n; words in the

: massachusetts
universe statue gray
cap steady Statue ‘
™ pennant ; crimson
man e white
el Ted g e black hat
P00k MAN %y
'Y 1 . caim
H.|gr.1 effort (H): Sample b lite Blonze
dictionary from the whole tshirt -
: cap Sl
universe red brickflag

technology

massachusetis
gray
pennant A crimson
gorro black\%
00 logo
calm
“Nlsculpture bronze
tshirt S
cap rg(brickflag

technology



Stage 1.5: Nature samples dictionary

* Nature will build a d-word dictionary for each
player by sampling d words without
replacement from his/her “observed universe’
according to conditional probabilities.

4

statue
cap

N _— mit statue Man red

tshirt :
house -~ Mit

= harvard statue scarf crimson

tshirt -
¢ap red bnckﬂagﬁrm

technology




Stage 2: Rank Your Words

* Each player chooses a permutation on her
dictionary words.

Dlfed[elsl=-TaHN [arvard Statue scarf crimson

Permutations: statue scarf harvard crimson
crimson harvard scarf statue

crimson harvard scarf statue

scarf crimson harvard Statue



Match

* For two sorted lists of words (x4, x5, ..., X4) and (v,
V2, - Ya) , if there exists 1 < i, j < d such that
x; = yj, then there is a match at location max(i, j)

with the word x; (y;). The first match is the pair (i, j)
that minimizes max(i, j) such that x; = y;.

- mit statue man

& INAN harvard scarf



Utility Function

 Match-early preference: players prefer to match as
early as possible, regardless of what word they are
matched on

(W, 1) = (wy, 1) == (wy, 1) > (wy, 1) = (wy, 1) . = (W, 1) >
> (W1; ld) = (Wz, ld) e = (Wn, ld)

* Rare-words preference: players prefer to match on
words that are less frequent and indifferent between
which location they match on

(Wn: ll) = (Wn; l2) == (Wn; ld) > (Wn—lill) = (Wn_l, lZ) =
Wo_, lg) > . >, [) = (wy, ) .o = (wy, 1)



Model Discussion

* Assumptions and Simplification

- Common knowledge on word universe and
frequency

- Fixed low universe and dictionary size (n; and d) for
every player

- Consciously chooses effort level and no strategy
updating



Equilibrium Analysis

* Are there any equilibrium exist for every distribution
over universe U and every utility function u
consistent with match-early preference(rare-word
preference)?

* In some specific scenario, say the distribution over
universe U satisfies a Zipfian distribution, what can
we say about different strategies?

* How can we reach those “desirable” equilibrium?



Solution Concepts

 Dominant strategy: No matter what is your opponent’s
strategy and what your and your opponent’s types turn
out to be, your current strategy is always the best.

U; (Si*(Di): S—i(D—i)) = U; (Si’(Di); S—i(D—i))
VS_l', VDi,VD_i,VSi, == Si*

* Ex-post Nash equilibrium: Knowing your opponent’s
strategy, no matter what your and your opponent’s types
turn out to be, the current strategy is always the best
response.

U; (Si*(Di)rS—i*(D—i)) = U (Si’(Di): S—i*(D—i))
vD;,VD_;,Vs;" + s;*



Solution Concepts (Cont’d)

* Ordinal Bayesian-Nash equilibrium: Knowing
your opponent’s strategy, no matter what
your type turns out to be, the current strategy
always maximize your expected utility.

w5 DD, 517 = (5D, 51°)
VDL', VSL" * Si*



Match-early Preference: Stage 2

* Proposition 1. The second-stage strategy

profile (s;%, s,*) is not an ex-post Nash
equilibrium.

Counterexample: D; = {w{,w,}and D, = {w,, w3}.
deviate
m
Player 1: W1, Wy ) W, W1
—
match at match at

position 2 position 1
v .
Player 2: ﬂ Wy, W3 Wy, W3



Decreasing Frequency in Equilibrium

* Theorem 2. Second-stage strategy profile (s;*, s,%) is

a strict ordinal Bayesian-Nash equilibrium for the
second-stage ESP game for every distribution over U
and every choice of effort levels e, e,. Moreover,
the set of almost decreasing strategy profiles are the
only strategy profiles, in which at least one player
plays a consistent strategy, that can be an ordinal
Bayesian-Nash equilibrium for every distribution over
U and every choice of effort levels e4, €e,.



Proof Sketch

* Almost decreasing strategy profiles are
Bayesian-Nash equilibrium for all distribution
- Utility Maximization = Stochastically Domination (Theorem 1)

- Construct a best response given a strategy (Algorithm 1)

- If a strategy s satisfy preservation condition (Definition 11)
and strong condition (Definition 12), the best response
constructed through Algorithm 1 is in agreement with s and
strictly stochastically dominate all other strategies (Lemma 2)

- Almost decreasing strategy satisfy these two conditions
(Lemma 3)



Algorithm 1

Algorithm 1 Candidate Best Response for Player 1

1: Input: sampled Dy, 7 = (e9, )
2: Maintain ordered list s;(D;) =0
L fori=1toddo

: Add element

Fug= argmax Z Pr(Dy) - I(w; is in the top i of sy(Dy))
wi€Di—s1(Dy) DyeD..

to the end of the ordered list s;([))
5 end for
6: Output: s1(D))




Proof Sketch(Cont’d)

* Almost decreasing strategy profile are the only
Bayesian-Nash equilibrium for all distribution

- For uniform distribution, symmetric strategy profile (s, s) is
strictly Bayesian-Nash equilibrium (Lemma 4)

- (s,5) is the only possible form of Bayesian-Nash strategy
profile for all distribution

- If s is not almost decreasing, there exists a distribution F(U)
such that the best response constructed by Algorithm 1 s’ # s

(Lemma 5)

- s’ can’t stochastically dominate other strategies. However, if
s’ can’t, no other strategies can (Lemma 1)

- Contradiction.



Match-early Preference: Full Game

* Theorem 3. ((L,s;%), (L, Szl)) is a strict ordinal
Bayesian-Nash equilibrium of the complete ESP game
under match-early preferences, for every distribution
over U, except the uniform distribution. Moreover,

(L,s{%) is a strict ordinal best-response to (H, Szl)

for every distribution over U, except the uniform
distribution.

- Proof sketch: Randomly map each dictionary sampled from
the whole universe into a dictionary sampled from the low
universe, which stochastically dominates itself.



Rare-words Preference: Stage 2

* Proposition 4. Second-stage strategy 51l IS
strictly dominated for any second-stage
strategy of player 2 and for any distribution
over U and any choice of effort levels e4, e,

under rare-words preferences.



Increasing Frequency in Equilibrium

* Theorem 4. Second-stage strategy profile
(s1',s,") is a strict ex-post Nash equilibrium
for the second-stage of the ESP game for every

distribution over U and every e; = e,, under
rare-words preferences.



Rare-words Preference: Full Game

* Proposition 5. ((L,s1"), (L, SZT)) is a strict
ordinal Bayesian-Nash equilibrium of the
complete ESP game for every distribution over
U under rare-words preferences.

* Proposition 6. ((H,s;'), (H, SZT)) is not a
strict ordinal Bayesian-Nash equilibrium of the
complete ESP game for any distribution under
rare-words preferences.



Relaxation

e Every Distribution, Every Utility Function

* Add some restrictions on utility function so
that the desirable equilibrium could be
achieved under every distribution?

* For specific distribution in practice, what
should we do to get desirable equilibrium?



Successive Outcome Ratio and Equilibrium

harvard scarf statue

Frequency

0.0005

0.0008

0.001

0.005

0.01

Utility

50

25

4

2

1

* Ratio of successive outcome: If 04 > 0, >... > 0y,
v(0;)
v(0i41)
* Proposition 7. ((H,s,"), (H, SZT)) is a Bayesian-Nash
equilibrium of the ESP game for all distributions over U

and any utility function that satisfies rare-words
PrWn-k€DH) for a1l k

Pr(Wn—k+1€Dy)

a; =

preferences and a;, =



Zipfian Distribution and Equilibrium

e Zipfian Distribution: Frequency of word is inversely
proportional to its rank in frequency table, i.e.

flw;) = iis,s > ( (Holds for most languages)

* Additive utility function: If 04 > 0, >... > 0, V(Oj) —
V(Oj+1) = ¢ for some constant ¢ > 0 and v(o,) = 0.

* Multiplicative utility function, If 0, > 0, >... > 0,,,

V(o)) > 1 for some constantr > 1.
V(0j+1)




Zipfian Distribution and Equilibrium (Cont’d)

* Theorem 5. ((H,s;"), (H, SZT)) is @ Bayesian-Nash
equilibrium of the complete ESP game for Zipfian
distribution over U with s < 1 and any additive
utility function that satisfies rare-words preferences

and any multiplicative utility function that satisfies
rare-words preferences with r = 2.



