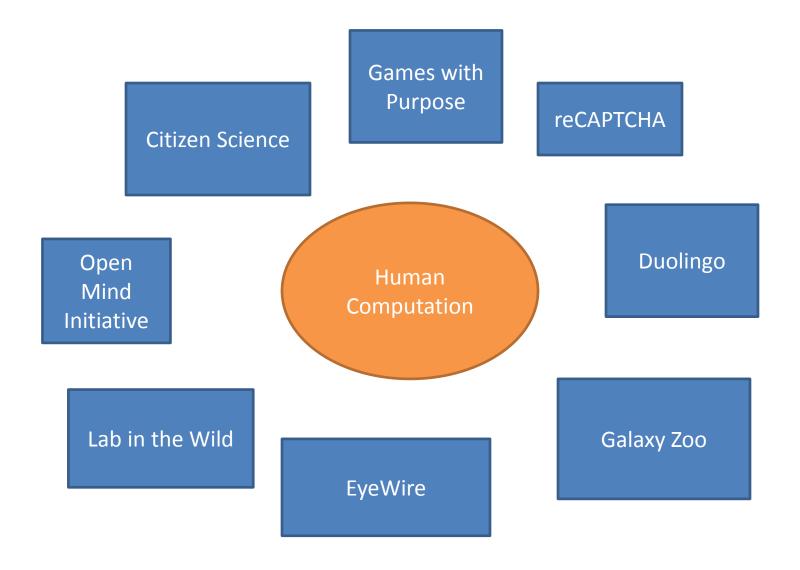
1. Games with a Purpose

2. A Game Theoretic Analysis of the ESP Game

Ming Yin and Steve Komarov

Human Computation Today



Human Computation (early days)

"A CAPTCHA is a cryptographic protocol whose underlying hardness assumption is based on an AI problem" 2002

Benefits player Benefits s/b else

CAPTCHA

Human Computation reCAPTCHA

"People waste hundreds of thousands of hours solving CAPTCHAs every day. Let's make use of their work."

FUN

Benefits player

Benefits s/b else

- reCAPTCHA
 - CAPTCHA

Human Computation GWAP

"More than 200 million hours are spent each day playing computer games in the US."

Games with a Purpose

Benefits player

Benefits s/b else

- reCAPTCHA
 - CAPTCHA

Human Computation Duolingo

FUN • Games with a Purpose Duolingo • Benefits **Benefits** s/b else player • reCAPTCHA CAPTCHA

Games with purpose

A GWAP:

- Provides entertainment to the player
- Solves a problem that cannot be automated, as a side effect of playing the game
- Does not rely on altruism or financial incentives

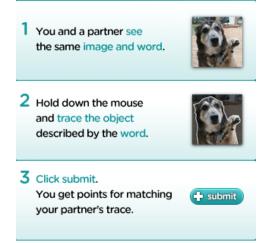
Motivation for GWAP

Motivation:

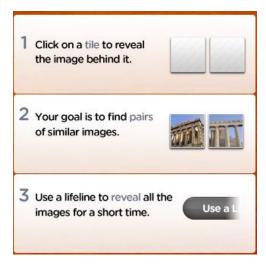
- Access to Internet
- Tasks hard for computers, but easy for humans
- People spend lots of time playing computer games

Examples of GWAPS

- ESP Game: labeling images
- Tag a Tune: labeling songs
- Verbosity: common facts about words
- Peekaboom: marking objects in an image
- Squigl



Flipit

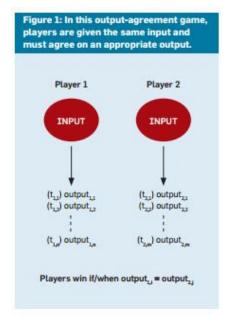


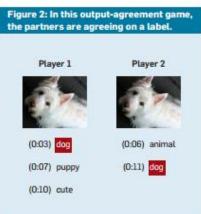
Popvideo

Three templates for GWAPS

- Output-agreement games
 - ESP
 - SQUIGL
 - Popvideo
- Inversion-problem games
 - Peekaboom
 - Phetch
 - Verbosity
- Input-agreement games
 - TagATune

Output-agreement games





- Players receive the same input
- Players do not communicate
- Players produce outputs based on the input
- Game ends when outputs match

ESP Game

Player 1 input:

Player 1 outputs:

- Grass
- Green
- Dog
- Mammal
- Retriever

Player 2 input:

Player 2 outputs:

- Puppy
- Tail
- Dog

ESP modified

Player 1 input:

Player 1 outputs:

• Dog

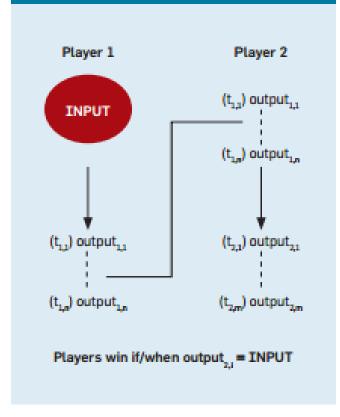
Player 2 input:

- "Dog"
- Set of images:

Player 2 outputs:

Inversion-problem games

Figure 3: In this inversion-problem game, given an input, Player 1 produces an output, and Player 2 guesses the input.

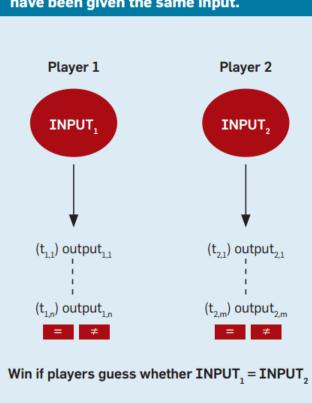


- Players receive different inputs
- One player is a "describer", another is a "guesser".
- Game ends when the guesser reproduces the input of the describer
- Limited communication,
 e.g. "hot" or "cold"

Inversion-problem games Verbosity

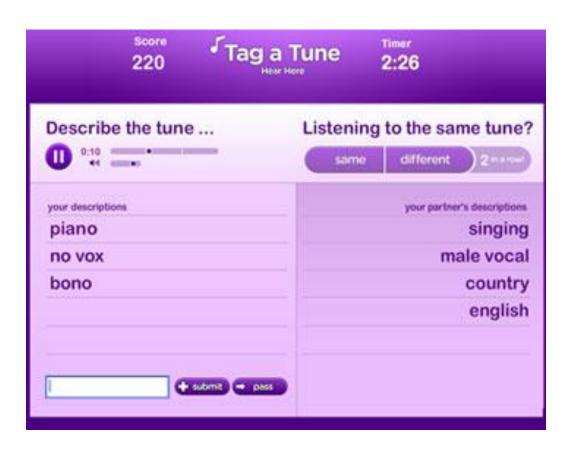
Input-agreement games

Figure 4: In this input-agreement game, players must determine whether they have been given the same input.



- Players are given (same or different) inputs
- Players describe their inputs
- Players see each other's descriptions
- Game ends when the players make a guess whether the inputs were same or different

Input-agreement games TagATune



Increasing player enjoyment

How do the authors measure Fun and Enjoyment? Mechanisms:

- Timed response: setting time limits
 - "Challenging and well-defined" > "Easy and well-defined"
- Score keeping
 - Rewards good performance
- Player skill levels
 - 42% of players just above rank cutoff
- High-score lists
 - Does not always work
- Randomness
 - Random difficulty, random partners

Output Accuracy

- Random matching
 - Prevents collusion
- Player testing
 - Compare answers to a gold standard
- Repetition
 - Accuracy by numbers
- Taboo outputs
 - Brings out the rarer outputs (priming danger)

GWAP Evaluation

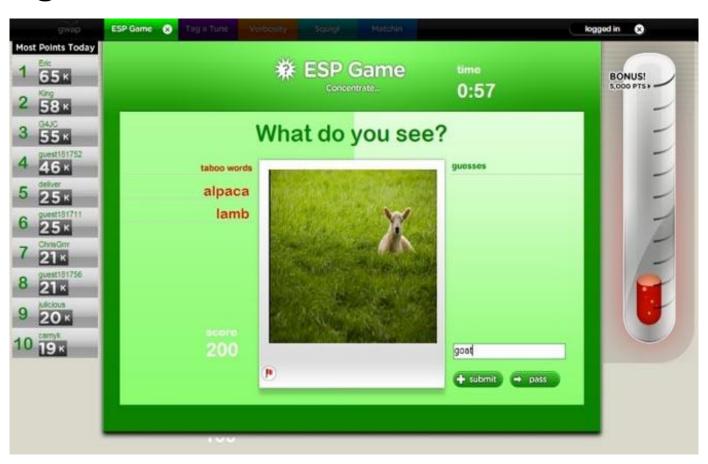
- Throughput = #problem instances/human hour
- Enjoyment (average lifetime play): time spent on a game/#players
- Expected contribution (per player) = throughput*ALP

Game

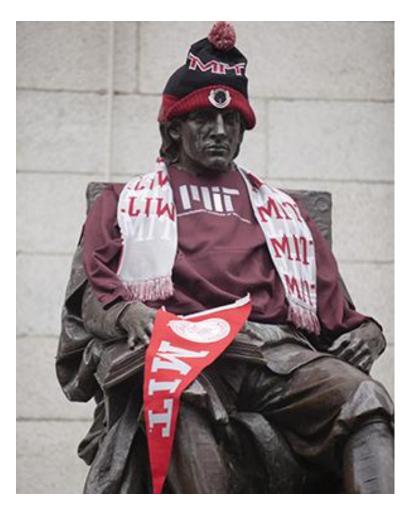
A Game-Theoretic Analysis of the ESP Game

The ESP Game

 Developed by Luis von Ahn et. al. and sold to Google in 2006.



Formal ESP Model



```
massachusetts
       steady statue crimson hand white
house book man wall harvard calm stocking
         shirtsculpture bronze
     tshirt institutescarffirm cap red brickflag
             technology
```

Image Universe

Stage 1: Choose Your Effort

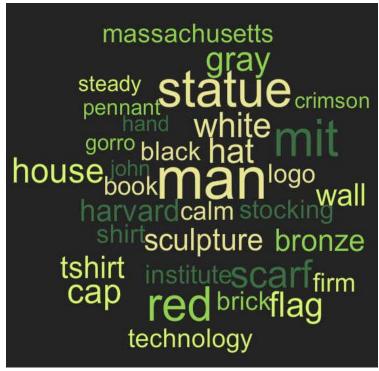
 Low effort (L): Sample dictionary from most frequent words only,

i.e. the top n_L words in the

universe

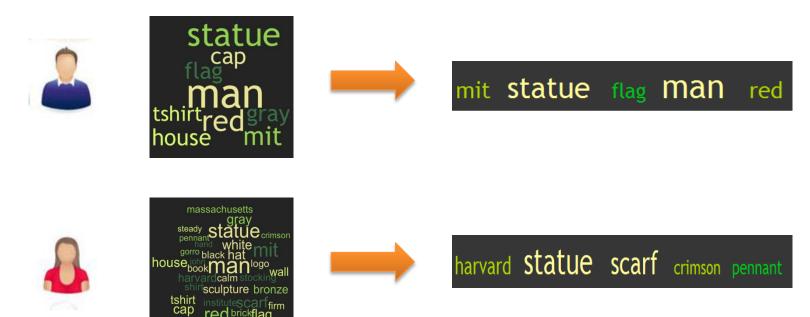
 High effort (H): Sample dictionary from the whole

universe



Stage 1.5: Nature samples dictionary

• Nature will build a d-word dictionary for each player by sampling d words without replacement from his/her "observed universe" according to conditional probabilities.



Stage 2: Rank Your Words

 Each player chooses a permutation on her dictionary words.



• • •

Match

• For two sorted lists of words $(x_1, x_2, ..., x_d)$ and $(y_1, y_2, ..., y_d)$, if there exists $1 \le i, j \le d$ such that $x_i = y_j$, then there is a match at location max(i, j) with the word $x_i(y_j)$. The first match is the pair (i, j) that minimizes max(i, j) such that $x_i = y_j$.

Utility Function

 Match-early preference: players prefer to match as early as possible, regardless of what word they are matched on

$$(w_1, l_1) \equiv (w_2, l_1) \equiv \cdots \equiv (w_n, l_1) > (w_1, l_2) \equiv (w_2, l_2) \dots \equiv (w_n, l_2) > \dots$$

> $(w_1, l_d) \equiv (w_2, l_d) \dots \equiv (w_n, l_d)$

 Rare-words preference: players prefer to match on words that are less frequent and indifferent between which location they match on

$$(w_n, l_1) \equiv (w_n, l_2) \equiv \cdots \equiv (w_n, l_d) > (w_{n-1}, l_1) \equiv (w_{n-1}, l_2) \dots \equiv (w_{n-1}, l_d) > \dots > (w_1, l_1) \equiv (w_1, l_2) \dots \equiv (w_1, l_d)$$

Model Discussion

- Assumptions and Simplification
- Common knowledge on word universe and frequency
- Fixed low universe and dictionary size $(n_L \text{ and } d)$ for every player
- Consciously chooses effort level and no strategy updating

Equilibrium Analysis

- Are there any equilibrium exist for every distribution over universe *U* and every utility function *u* consistent with match-early preference(rare-word preference)?
- In some specific scenario, say the distribution over universe *U* satisfies a Zipfian distribution, what can we say about different strategies?
- How can we reach those "desirable" equilibrium?

Solution Concepts

 Dominant strategy: No matter what is your opponent's strategy and what your and your opponent's types turn out to be, your current strategy is always the best.

$$u_{i}\left(s_{i}^{*}(D_{i}), s_{-i}(D_{-i})\right) \ge u_{i}\left(s_{i}'(D_{i}), s_{-i}(D_{-i})\right)$$

 $\forall s_{-i}, \forall D_{i}, \forall D_{-i}, \forall s_{i}' \ne s_{i}^{*}$

• **Ex-post Nash equilibrium**: Knowing your opponent's strategy, no matter what your and your opponent's types turn out to be, the current strategy is always the best response.

$$u_i(s_i^*(D_i), s_{-i}^*(D_{-i})) \ge u_i(s_i'(D_i), s_{-i}^*(D_{-i}))$$

 $\forall D_i, \forall D_{-i}, \forall s_i' \ne s_i^*$

Solution Concepts (Cont'd)

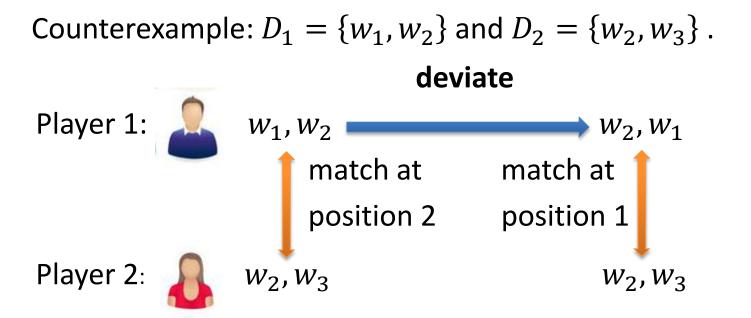
 Ordinal Bayesian-Nash equilibrium: Knowing your opponent's strategy, no matter what your type turns out to be, the current strategy always maximize your expected utility.

$$u_i(s_i^*(D_i), s_{-i}^*) \ge u_i(s_i'(D_i), s_{-i}^*)$$

 $\forall D_i, \forall s_i' \ne s_i^*$

Match-early Preference: Stage 2

• **Proposition 1.** The second-stage strategy profile $(s_1^{\downarrow}, s_2^{\downarrow})$ is not an ex-post Nash equilibrium.



Decreasing Frequency in Equilibrium

• **Theorem 2.** Second-stage strategy profile $(s_1^{\downarrow}, s_2^{\downarrow})$ is a strict ordinal Bayesian-Nash equilibrium for the second-stage ESP game for every distribution over U and every choice of effort levels e_1 , e_2 . Moreover, the set of almost decreasing strategy profiles are the only strategy profiles, in which at least one player plays a consistent strategy, that can be an ordinal Bayesian-Nash equilibrium for every distribution over U and every choice of effort levels e_1 , e_2 .

Proof Sketch

- Almost decreasing strategy profiles are Bayesian-Nash equilibrium for all distribution
- Utility Maximization \equiv Stochastically Domination (Theorem 1)
- Construct a best response given a strategy (Algorithm 1)
- If a strategy s satisfy preservation condition (Definition 11) and strong condition (Definition 12), the best response constructed through Algorithm 1 is in agreement with s and strictly stochastically dominate all other strategies (Lemma 2)
- Almost decreasing strategy satisfy these two conditions (Lemma 3)

Algorithm 1

Algorithm 1 Candidate Best Response for Player 1

- 1: Input: sampled D_1 , $\sigma_2 = (e_2, s_2)$
- 2: Maintain ordered list $s_1(D_1) = \emptyset$
- 3: for i = 1 to d do
- 4: Add element

$$E_{add} = \underset{w_j \in D_1 - s_1(D_1)}{\arg \max} \sum_{D_2 \in \mathcal{D}_{e_2}} \Pr(D_2) \cdot I(w_j \text{ is in the top } i \text{ of } s_2(D_2))$$

to the end of the ordered list $s_1(D_1)$

- 5: end for
- 6: Output: $s_1(D_1)$

Proof Sketch(Cont'd)

- Almost decreasing strategy profile are the only Bayesian-Nash equilibrium for all distribution
- For uniform distribution, symmetric strategy profile (s, s) is strictly Bayesian-Nash equilibrium (Lemma 4)
- (s,s) is the only possible form of Bayesian-Nash strategy profile for all distribution
- If s is not almost decreasing, there exists a distribution F(U) such that the best response constructed by Algorithm 1 $s' \neq s$ (Lemma 5)
- s' can't stochastically dominate other strategies. However, if s' can't, no other strategies can (Lemma 1)
- Contradiction.

Match-early Preference: Full Game

• Theorem 3. $((L, s_1^{\downarrow}), (L, s_2^{\downarrow}))$ is a strict ordinal Bayesian-Nash equilibrium of the complete ESP game under match-early preferences, for every distribution over U, except the uniform distribution. Moreover, (L, s_1^{\downarrow}) is a strict ordinal best-response to (H, s_2^{\downarrow}) for every distribution over U, except the uniform distribution.

 Proof sketch: Randomly map each dictionary sampled from the whole universe into a dictionary sampled from the low universe, which stochastically dominates itself.

Rare-words Preference: Stage 2

• **Proposition 4.** Second-stage strategy s_1^{\downarrow} is strictly dominated for any second-stage strategy of player 2 and for any distribution over U and any choice of effort levels e_1 , e_2 , under rare-words preferences.

Increasing Frequency in Equilibrium

• **Theorem 4.** Second-stage strategy profile $(s_1^{\ \ }, s_2^{\ \ })$ is a strict ex-post Nash equilibrium for the second-stage of the ESP game for every distribution over U and every $e_1 = e_2$, under rare-words preferences.

Rare-words Preference: Full Game

• **Proposition 5.** $((L, s_1^{\ \uparrow}), (L, s_2^{\ \uparrow}))$ is a strict ordinal Bayesian-Nash equilibrium of the complete ESP game for every distribution over U under rare-words preferences.

• **Proposition 6.** $((H, s_1^{\ }), (H, s_2^{\ }))$ is not a strict ordinal Bayesian-Nash equilibrium of the complete ESP game for any distribution under rare-words preferences.

Relaxation

- Every Distribution, Every Utility Function
- Add some restrictions on utility function so that the desirable equilibrium could be achieved under every distribution?
- For specific distribution in practice, what should we do to get desirable equilibrium?

Successive Outcome Ratio and Equilibrium

pennant	crimson	harvard	scarf	statue
P				

Frequency	0.0005	0.0008	0.001	0.005	0.01
Utility	50	25	4	2	1

- Ratio of successive outcome: If $o_1 > o_2 > ... > o_n$, $\alpha_i = \frac{v(o_i)}{v(o_{i+1})}$.
- **Proposition 7**. $((H, s_1^{\uparrow}), (H, s_2^{\uparrow}))$ is a Bayesian-Nash equilibrium of the ESP game for all distributions over U and any utility function that satisfies rare-words preferences and $\alpha_k \geq \frac{\Pr(w_{n-k} \in D_H)}{\Pr(w_{n-k+1} \in D_H)}$ for all k.

Zipfian Distribution and Equilibrium

- Zipfian Distribution: Frequency of word is inversely proportional to its rank in frequency table, i.e. $f(w_i) = \frac{1}{i^s}$, s > 0 (Holds for most languages)
- Additive utility function: If $o_1 > o_2 > ... > o_n$, $v(o_j) v(o_{j+1}) = c$ for some constant c > 0 and $v(o_n) = 0$.
- Multiplicative utility function, If $o_1 > o_2 > ... > o_n$, $\frac{\mathbf{v}(o_j)}{\mathbf{v}(o_{j+1})} \geq r \text{ for some constant } r > 1.$

Zipfian Distribution and Equilibrium (Cont'd)

• **Theorem 5.** $((H, s_1^{\uparrow}), (H, s_2^{\uparrow}))$ is a Bayesian-Nash equilibrium of the complete ESP game for Zipfian distribution over U with $s \leq 1$ and any additive utility function that satisfies rare-words preferences and any multiplicative utility function that satisfies rare-words preferences with $r \geq 2$.