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“A CAPTCHA is a cryptographic protocol 
whose underlying hardness assumption is  
based on an AI problem” 2002 
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“People waste hundreds of thousands of hours 
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their work.” 

  CAPTCHA 



Human Computation 
GWAP 

FUN 

Benefits 
player 

Benefits 
s/b else 

“More than 200 million hours are spent each 
day playing computer games in the US.” 
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Games with purpose 

A GWAP:  

• Provides entertainment to the player 

• Solves a problem that cannot be automated, 
as a side effect of playing the game  

• Does not rely on altruism or financial 
incentives 



Motivation for GWAP 

Motivation: 

• Access to Internet 

• Tasks hard for computers, but easy for humans 

• People spend lots of time playing computer 
games 



Examples of GWAPS 

• ESP Game: labeling images 

• Tag a Tune: labeling songs 

• Verbosity: common facts about words 

• Peekaboom: marking objects in an image 

• Squigl                               Flipit                                Popvideo 
 

 

 



Three templates for GWAPS 

• Output-agreement games 
– ESP 
– SQUIGL 
– Popvideo 

• Inversion-problem games 
– Peekaboom 
– Phetch 
– Verbosity 

• Input-agreement games 
– TagATune 



Output-agreement games 

• Players receive the same input 

• Players do not communicate 

• Players produce outputs based on 
the input 

• Game ends when outputs match 



ESP Game 

Player 1 input: 

Player 1 outputs: 
• Grass 
• Green 
• Dog 
• Mammal 
• Retriever 

 
 

Player 2 input: 

Player 2 outputs: 
• Puppy 
• Tail 
• Dog 

 
 



ESP modified 
Player 1 input: 

Player 1 outputs: 
• Dog 

 
 

Player 2 input:  
• “Dog” 
• Set of images: 

Player 2 outputs: 



Inversion-problem games 

• Players receive different 
inputs 

• One player is a “describer”,  
another is a “guesser”.  

• Game ends when the 
guesser reproduces the 
input of the describer 

• Limited communication, 
e.g. “hot” or “cold”  

 



Inversion-problem games 
Verbosity 



Input-agreement games 

• Players are given (same or 
different) inputs 

• Players describe their inputs 

• Players see each other’s 
descriptions 

• Game ends when the players 
make a guess whether the 
inputs were same or different 



Input-agreement games 
TagATune 



Increasing player enjoyment 

How do the authors measure Fun and Enjoyment? 

Mechanisms: 
• Timed response: setting time limits 

• “Challenging and well-defined” > “Easy and well-defined” 

• Score keeping 
• Rewards good performance 

• Player skill levels 
• 42% of players just above rank cutoff 

• High-score lists 
• Does not always work 

• Randomness 
• Random difficulty, random partners 

 



Output Accuracy 

• Random matching 

– Prevents collusion 

• Player testing 

– Compare answers to a gold standard 

• Repetition 

– Accuracy by numbers 

• Taboo outputs 

– Brings out the rarer outputs (priming danger) 



GWAP Evaluation 

• Throughput = #problem instances/human hour 

• Enjoyment (average lifetime play):  time spent 
on a game/#players 

• Expected contribution (per player) = 
throughput*ALP 



Game 

 



A Game-Theoretic Analysis of the 
ESP Game 



The ESP Game 

• Developed by Luis von Ahn et. al. and sold to 
Google in 2006. 

 



Formal ESP Model 

        Image                                                                       Universe 



Stage 1: Choose Your Effort 
• Low effort (L): Sample dictionary 

from most frequent words only, 
i.e. the top 𝑛𝐿 words in the 
universe 

 

 
• High effort (H): Sample 

dictionary from the whole 
universe 



Stage 1.5: Nature samples dictionary 

• Nature will build a 𝑑-word dictionary for each 
player by sampling 𝑑 words without 
replacement from his/her “observed universe” 
according to conditional probabilities. 



Stage 2: Rank Your Words 

• Each player chooses a permutation on her 
dictionary words. 

 

        Dictionary: 
 

 Permutations:  

  

… 



Match 

• For two sorted lists of words (𝑥1, 𝑥2, …, 𝑥𝑑) and (𝑦1, 
𝑦2, …, 𝑦𝑑) , if there exists 1 ≤ 𝑖, 𝑗 ≤ 𝑑 such that 
𝑥𝑖 = 𝑦𝑗, then there is a match at location 𝑚𝑎𝑥⁡(𝑖, 𝑗) 

with the word 𝑥𝑖(𝑦𝑗). The first match is the pair (𝑖, 𝑗) 

that minimizes 𝑚𝑎𝑥⁡(𝑖, 𝑗) such that 𝑥𝑖 = 𝑦𝑗. 



Utility Function 

• Match-early preference: players prefer to match as 
early as possible, regardless of what word they are 
matched on 

     𝑤1, 𝑙1 ≡ 𝑤2, 𝑙1 ≡ ⋯ ≡ (𝑤𝑛, 𝑙1) ≻ 𝑤1, 𝑙2 ≡ 𝑤2, 𝑙2 … ≡ (𝑤𝑛, 𝑙2) ≻ …    

      ≻ 𝑤1, 𝑙𝑑 ≡ 𝑤2, 𝑙𝑑 … ≡ (𝑤𝑛, 𝑙𝑑)  

 

• Rare-words preference: players prefer to match on 
words that are less frequent and indifferent between 
which location they match on  

     𝑤𝑛, 𝑙1 ≡ 𝑤𝑛, 𝑙2 ≡ ⋯ ≡ (𝑤𝑛, 𝑙𝑑) ≻ 𝑤𝑛−1, 𝑙1 ≡ 𝑤𝑛−1, 𝑙2 … ≡ 

     (𝑤𝑛−1, 𝑙𝑑) ≻ …   ≻ 𝑤1, 𝑙1 ≡ 𝑤1, 𝑙2 … ≡ (𝑤1, 𝑙𝑑)  

 



Model Discussion 

• Assumptions and Simplification 
 

- Common knowledge on word universe and 
frequency 

- Fixed low universe and dictionary size (𝑛𝐿 and 𝑑) for 
every player 

- Consciously chooses effort level and no strategy 
updating  



Equilibrium Analysis 

• Are there any equilibrium exist for every distribution 
over universe 𝑈 and every utility function 𝑢 
consistent with match-early preference(rare-word 
preference)? 

• In some specific scenario, say the distribution over 
universe 𝑈 satisfies a Zipfian distribution, what can 
we say about different strategies?  

• How can we reach those “desirable” equilibrium? 



Solution Concepts 
• Dominant strategy: No matter what is your opponent’s 

strategy and what your and your opponent’s types turn 
out to be, your current strategy is always the best. 

𝑢𝑖 𝑠𝑖
∗ 𝐷𝑖 , 𝑠−𝑖 𝐷−𝑖 ≥ 𝑢𝑖 𝑠𝑖

′ 𝐷𝑖 , 𝑠−𝑖 𝐷−𝑖 ⁡⁡⁡⁡⁡ 

∀𝑠−𝑖 , ∀𝐷𝑖 , ∀𝐷−𝑖 , ∀𝑠𝑖
′ ≠ 𝑠𝑖

∗ 

 

• Ex-post Nash equilibrium: Knowing your opponent’s 
strategy, no matter what your and your opponent’s types 
turn out to be, the current strategy is always the best 
response. 

𝑢𝑖 𝑠𝑖
∗ 𝐷𝑖 , 𝑠−𝑖

∗ 𝐷−𝑖 ≥ 𝑢𝑖 𝑠𝑖
′ 𝐷𝑖 , 𝑠−𝑖

∗ 𝐷−𝑖 ⁡⁡⁡⁡⁡ 

∀𝐷𝑖 , ∀𝐷−𝑖 , ∀𝑠𝑖
′ ≠ 𝑠𝑖

∗ 



Solution Concepts (Cont’d) 

• Ordinal Bayesian-Nash equilibrium: Knowing 
your opponent’s strategy, no matter what 
your type turns out to be, the current strategy 
always maximize your expected utility. 

 
𝑢𝑖 𝑠𝑖

∗ 𝐷𝑖 , 𝑠−𝑖
∗ ≥ 𝑢𝑖 𝑠𝑖

′ 𝐷𝑖 , 𝑠−𝑖
∗ ⁡⁡⁡⁡⁡ 

∀𝐷𝑖 , ∀𝑠𝑖
′ ≠ 𝑠𝑖

∗ 

 



Match-early Preference: Stage 2 

• Proposition 1. The second-stage strategy 

profile (𝑠1
↓, 𝑠2

↓) is not an ex-post Nash 

equilibrium. 
 

    Counterexample: 𝐷1 = 𝑤1, 𝑤2  and 𝐷2 = 𝑤2, 𝑤3  .  

                                                           deviate 

      Player 1:              𝑤1, 𝑤2                                     𝑤2, 𝑤1     

                                            match at           match at                                 

                                            position 2         position 1 

      Player 2:                  𝑤2, 𝑤3                            𝑤2, 𝑤3 



Decreasing Frequency in Equilibrium  

• Theorem 2. Second-stage strategy profile (𝑠1
↓, 𝑠2

↓) is 

a strict ordinal Bayesian-Nash equilibrium for the 
second-stage ESP game for every distribution over 𝑈 
and every choice of effort levels 𝑒1, 𝑒2. Moreover, 
the set of almost decreasing strategy profiles are the 
only strategy profiles, in which at least one player 
plays a consistent strategy, that can be an ordinal 
Bayesian-Nash equilibrium for every distribution over 
𝑈 and every choice of effort levels 𝑒1, 𝑒2.  



Proof Sketch 

• Almost decreasing strategy profiles are 
Bayesian-Nash equilibrium for all distribution 

- Utility Maximization ≡ Stochastically Domination (Theorem 1) 

- Construct a best response given a strategy (Algorithm 1) 

- If a strategy 𝑠 satisfy preservation condition (Definition 11) 
and strong condition (Definition 12), the best response 
constructed through Algorithm 1 is in agreement with 𝑠 and 
strictly stochastically dominate all other strategies (Lemma 2) 

- Almost decreasing strategy satisfy these two conditions 
(Lemma 3) 



Algorithm 1 

 



Proof Sketch(Cont’d) 

• Almost decreasing strategy profile are the only 
Bayesian-Nash equilibrium for all distribution 

- For uniform distribution, symmetric strategy profile (𝑠, 𝑠) is 
strictly Bayesian-Nash equilibrium (Lemma 4) 

- (𝑠, 𝑠) is the only possible form of Bayesian-Nash strategy 
profile for all distribution 

- If 𝑠 is not almost decreasing, there exists a distribution 𝐹(𝑈) 
such that the best response constructed by Algorithm 1 𝑠′ ≠ 𝑠 
(Lemma 5) 

- 𝑠′ can’t stochastically dominate other strategies. However, if 
𝑠′ can’t, no other strategies can (Lemma 1) 

- Contradiction. 



Match-early Preference: Full Game 

• Theorem 3. ((𝐿, 𝑠1
↓), (𝐿, 𝑠2

↓)) is a strict ordinal 
Bayesian-Nash equilibrium of the complete ESP game 
under match-early preferences, for every distribution 
over 𝑈, except the uniform distribution. Moreover, 

(𝐿, 𝑠1
↓) is a strict ordinal best-response to (𝐻, 𝑠2

↓) 
for every distribution over 𝑈, except the uniform 
distribution. 

 
- Proof sketch: Randomly map each dictionary sampled from 

the whole universe into a dictionary sampled  from the low 
universe, which stochastically dominates itself. 

 



Rare-words Preference: Stage 2 

• Proposition 4. Second-stage strategy 𝑠1
↓ is 

strictly dominated for any second-stage 
strategy of player 2 and for any distribution 
over 𝑈 and any choice of effort levels 𝑒1, 𝑒2, 
under rare-words preferences. 



Increasing Frequency in Equilibrium 

• Theorem 4. Second-stage strategy profile 

(𝑠1
↑, 𝑠2

↑) is a strict ex-post Nash equilibrium 

for the second-stage of the ESP game for every 
distribution over 𝑈 and every 𝑒1 = 𝑒2, under 
rare-words preferences. 



Rare-words Preference: Full Game 

• Proposition 5. ((𝐿, 𝑠1
↑), (𝐿, 𝑠2

↑)) is a strict 
ordinal Bayesian-Nash equilibrium of the 
complete ESP game for every distribution over  
𝑈 under rare-words preferences.  

 

• Proposition 6. ((𝐻, 𝑠1
↑), (𝐻, 𝑠2

↑)) is not a 
strict ordinal Bayesian-Nash equilibrium of the 
complete ESP game for any distribution under 
rare-words preferences.  

 



Relaxation 

• Every Distribution, Every Utility Function 

• Add some restrictions on utility function so 
that the desirable equilibrium could be 
achieved under every distribution? 

• For specific distribution in practice, what 
should we do to get desirable equilibrium? 



Successive Outcome Ratio and Equilibrium 

 

 
 

• Ratio of successive outcome: If 𝑜1 ≻ 𝑜2 ≻… ≻ 𝑜𝑛, 

𝛼𝑖 =
𝑣(𝑜𝑖)

𝑣(𝑜𝑖+1)
. 

• Proposition 7. ((𝐻, 𝑠1
↑), (𝐻, 𝑠2

↑)) is a Bayesian-Nash 
equilibrium of the ESP game for all distributions over 𝑈 
and any utility function that satisfies rare-words 

preferences and 𝛼𝑘 ≥
Pr⁡(𝑤𝑛−𝑘∈𝐷𝐻)

Pr⁡(𝑤𝑛−𝑘+1∈𝐷𝐻)
 for all 𝑘. 

Frequency 0.0005 0.0008 0.001 0.005 0.01 

Utility 50 25 4 2 1 



Zipfian Distribution and Equilibrium 

• Zipfian Distribution: Frequency of word is inversely 
proportional to its rank in frequency table, i.e. 

𝑓 𝑤𝑖 =
1

𝑖𝑠
, 𝑠 > 0 (Holds for most languages) 

 

• Additive utility function: If 𝑜1 ≻ 𝑜2 ≻… ≻ 𝑜𝑛, v 𝑜𝑗 − 
v 𝑜𝑗+1 = 𝑐 for some constant 𝑐 > 0 and v 𝑜𝑛 = 0. 

 

• Multiplicative utility function, If 𝑜1 ≻ 𝑜2 ≻… ≻ 𝑜𝑛, 
v 𝑜𝑗

v 𝑜𝑗+1
≥ 𝑟 for some constant 𝑟 > 1. 



Zipfian Distribution and Equilibrium (Cont’d) 

• Theorem 5. ((𝐻, 𝑠1
↑), (𝐻, 𝑠2

↑)) is a Bayesian-Nash 

equilibrium of the complete ESP game for Zipfian 
distribution over 𝑈 with 𝑠 ≤ 1 and any additive 
utility function that satisfies rare-words preferences 
and any multiplicative utility function that satisfies 
rare-words preferences with 𝑟 ≥ 2. 


